
APPENDIX D. THE INFERENCING TOKEN LANGUAGE

120

Reset all rules to "unknown."

Invoke the given rule. Followed immedately by a 16-bit rule number.

Request the current value and expiration time of a rule. Followed
immediately by rule#, a 16-bit value in "big-endian"order. The reply is a
<Tell> message.

Assert the given value and expiration time for a rule. Followed immediately
by rule#, time, and value, all 16-bit values in "big-endian" order.

Set the real-time clock to the given 32-bit value. Followed immediately by a
four-byte value in "big-endian" order: MSB, 2ndSB, 3rdSB, LSB.

Reset all sequence numbers. Normally sent as a broadcast, in an
unsequenced message, to reset all the CPUs in the network.

Do nothing.

Terminate token processing (exit the token thread) if this sequence number
matches the last received from this sender. Followed immediately by a one-
byte sequence number.

Type the following text to the console. Followed immediately by a counted
string: a byte count n, then n characters.

Interpret the text string in TIB as a Forth command, then clear the TIB.

Put following text in the Terminal Input Buffer (TIB). Followed
immediately by a counted string: a byte count n, then n characters.

Terminate token processing (end of ITL statement)

Function

<Scrub>

<Invoke>

<Ask>

<Tell>

<Setclock>

<ReSequence>

<Noop>

<Sequence>

<Type>

<DoText>

<Text>

<Exit>

Token name

1B

1A

19

18

17

16

15

14

13

12

11

10

Hex

Network Inferencing Functions

Put a literal value on the stack. Followed immediately by a two-byte value
in "big-endian" order.

Function

<#literal>

Token name

20

Hex

Rule-Writing Language

121

Return a temporal true, if the value of the temporal integer is negative.

Return a temporal true, if the value of the temporal integer is zero.

Like > but uses unsigned integer comparison rather than signed.

Like < but uses unsigned integer comparison rather than signed.

Return a temporal true, if temporal integer 1 = temporal integer 2.

Return a temporal true, if temporal integer 1 < temporal integer 2.

Return a temporal true, if temporal integer 1 > temporal integer 2.

Return the maximum of two temporal integers.

Return the minimum of two temporal integers.

Subtract two temporal integers on the stack.

Add two temporal integers on the stack.

Put the temporal quantity "false, unknown" on the stack. (A value of zero,
and an expired time.)

Logically invert a temporal quantity on the stack.

Logically OR two temporal quantities on the stack.

Logicaly AND two temporal quantities on the stack. (A temporal quantity
has a value and an expiration time.)

Fetch the Forth variable specified by the following address, and stack it with
an expiration date of "forever." Followed by two-byte "big-endian" address.

Put the current 16-bit time plus a literal value on the stack. Followed
immediately by a two-byte in "big-endian" order.

Put the maximum future time on the stack.

Put the current 16-bit time on the stack.

Terminate token processing (exit the token thread) IF the fact on the top of
stack is unknown or false. Regardless of outcome, the fact is left
undisturbed on the stack.

Execute the Forth word at the given address. Followed by a two-byte
address in "big-endian" order.

Function

0<

0=

U>

U<

=

<

>

MAX

MIN

-

+

NULL

NOT

OR

AND

<Fetch>

<Hence>

<Forever>

<Now>

<UnnestF>

<'literal>

Token name

4A

49

48

47

46

45

44

43

42

41

40

33

32

31

30

26

25

24

23

22

21

Hex

Rule-Writing Language

